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I: Soil plasticity 

(1) Knowledge and wisdom from past achievements 
(2) Constitutive models and their importance 
(3) General Elasticity  
(4) Original Cam Clay model and soil plasticity 
(5) Models of the Cam Clay family 

 

(1) Knowledge and wisdom from past achievements 

The earth, our Mother Earth, made up of rocks and soils.  

The area of interest of geotechnical engineering 

The Mother Earth is the ground which supports us not only physically but mentally as well, 

because the extremities of life are associated with the earth.  The Earth preserves the 

wonders of the past and passes down legends and provides us with a beautiful land full of 

promise.  The activity of human beings on earth plays the key role to man’s evolution. 

Our ancestors’ knowledge and wisdom may shock our modern soil engineers and academia.  

Three examples are given here. 

The Pagoda of Phra Pathom Chedi, Thailand, the Great Wall of China, a British merchant. 
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The Pagoda of Phra Pathom Chedi, Thailand 

Fig. 1  The Pagoda of Phra Pathom Chedi, Thailand 

Built in 300 BC;  Height: 115 m; diameter of the circular base: 158 m. 

Weight: 500,000 ton. 

During the history of over 2300 years, the pagoda stands well, and a highly uniform 

settlement of 2.5 m has accumulated. 

An engineering miracle, more than the Pisa Tower. 

The load concentration of the pagoda: 10 MN/m2 

Modern design code:  4-5 MN/M2 for high building;                                         

1.5 – 4 MN/M2 for large silos. 

Knowledge: (1) it is the non-uniform settlement, not the uniform settlement, that destroys 

our structures.  (2) The bearing capacity of the ground increases with settlement.  

Modern soil mechanics with appropriate constitutive models and advanced numerical 

techniques gives the same conclusion.  But modern engineers dare not design such a 

building.  
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The Great Wall of China 

Fig. 2 The Great Wall of China 

Built around 250 BC as military defense project and was over 10,000 km long. With good 

maintenance after that, the Wall played an important role as National Wall Defense (NWD) 

until the middle of the 20th century. Its military function lasted over 2,000 years! 

Techniques used in the construction of the Wall 

(1)  Using wood hammers to densify the soil 

     They knew the strength and stiffness of soil can be effectively improved by increasing the 

density of soils. 

    This was an important research topic in 1960s. Even now, you may frequently read 

research reports on this topic. 

(2) Using grass and tree to reinforce soil 

They knew how to improve the strength of soil and stiffness of deformation by geo-textile 

reinforcement. 

(3) Using sticky rice to cement gravels, bricks and rocks. 

   Cementing gravels and rocks to give strong support 
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Reinforcement by strong materials and by cementation: very popular methods of soil 

improvement in our modern world since 1970. 

Only since 1980, research started on the improvement of soil strength and stiffness by 

reinforcement and cementation, and we find it is a very challenging topic and much more 

research is  required. 

The work in Thailand on this topic is world class (e.g., Prof. Bergado at Asian Institute of 

Technology, Dr. Horpibulsuk at Suranaree University of Technology). 

 

A British merchant 

Darwin (1883) and Renald (1887) made an important discovery of soil property.  

  When sheared, loose soil will shrink, but a dense soil will expands.  

This characteristic of soils, called as dilatancy, is a feature fundamental different from other 

engineering materials.  Rowe (1962) performed a “pioneering” study on dilatancy and 

proposed the Rowe’s  dilatancy law,  which marked a milestone in modern soil mechanics.  

Nevertheless, Darwin (1883) and Renald (1887) noticed that “Corn merchants have known 

dilatancy a very long time ago”.  

At that time in Britain, Corns were bought and sold by volume, not by weight. A common 

practice for a buyer would be:   

If you buy corns, you shake it. 

If corns decrease in volume, they are loose.  You shake them until they shrinks no more. If 

the volume increases, the corns are dense.   You leave them alone, you do not touch them.  

A good business sense, isn’t it? 

 

Conclusion 
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Our knowledge of soil mechanics comes from human practice.  Our most wonderful 

discovery in academic world sometimes may be merely a common sense for practitioners.  

Our research on soil mechanics is to help human practice. Only by serving human need, soil 

mechanics is a live theory.  

 

2: Constitutive models and their importance 

What is a constitutive model? 

A constitutive model describes the change in the strain state of an element 

of material to the change in the stress state acting on the element. 

Mathematically, it can be expressed as 

 

 

 

 

 

 

The response of soil to stress acting on it is dependent on factors such as the current stress 

state, stress history, and strain history. 

A constitutive model provides information on the strength and deformation of a material in 

an infinitesimal element under stress. 

In engineering designs and safety check, we are only concerned about two facts of our 

structures: the strength and deformation of the structure. Only through the knowledge of the 

strength and deformation of an element of the material can we compute the strength and 

deformation of an engineering structure.  Moreover, now that we have good mathematical 

models and advanced numerical analysis packages, the results of engineering computation 

( )σσγχξε ′′= dfd ,,,,

Strain increment Stress increment 

Strain history 

Stress history 

Material properties 

Current stress state 

(1)
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are essentially controlled by the accuracy of our constitutive models and reliable 

determination of model parameters. 

This is the importance and also the reason for constitutive modeling of soils. 

 

3: General Elasticity 

Modern soil mechanics was founded on the day when Terzaghi wrote (1936), 

σ′  = σ – u (2) 

This is the principle of effective stress, the sole foundation stone of modern soil mechanics. 

And Terzaghi became the founder  of modern soil mechanics. 

With the principle of effective stress we can make a sensible link between the deformation of 

soil and the stress acting on it.  Hereafter, principles of continuum mechanics are found to be 

applicable to soils. 

With the effective stress principle, theory of elasticity was naturally introduced into soil 

mechanics. The law for elastic deformation was firstly proposed by Hook (1678) as 

“deformation is proportional to force”. 

 

Fig. 3 Deformation of a soil element under stress 

At the element level (Fig. 3), Hook’s law can be written as: 

Strain is proportional to stress. 

1 

2 

3 dσ′ 
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For soil, the following incremental form is suggested, 

 

 

 

The strain and the stress are in one direction, i.e., along direction 1.  

Elastic response of soil to loading is dependent on mechanical property of the soil, and that 

mechanical property of the soil is represented by a material constant, the Young’s modulus. 

Later, it was observed that deformation can also be found at direction vertical to the applied 

stress, i.e., in the directions 2 and 3.  Hence, a complete Hook’s law for stress dσ′1 is obtain 

as  

 

 

 

 

 

 

The sign of the strain for the Poisson’s effective is negative.  This means that expansive 

deformation will be induced in direction vertical to the applied stress if the stress induces 

directly compression. 

For linear elastic problems with small deformation, the deformation of soil corresponding to 

the increments of the three principal stresses dσ′1, dσ′2, and dσ′3, can be obtained by 

superimposing the individual deformation.  Therefore 
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Via the principle of virtual work, we know ν12= ν21, ν23= ν32, ν13= ν31.  

The above equation is a general anisotropic elastici equation, because 

(1) Young’s modulus in direction 1, E1, can be different from E2 and E3, and  

(2) Poisson’s ratio for ν12, deformation in direction 2 by loading in direction 1,  can be 

different from ν23 and ν31. 

For an isotropic material, E1=E2=E3=E, ν12= ν21= ν23= ν32= ν13= ν31=ν.  Then, the 

isotropic elastic equation is  

 

 

 

 

 

Elastic deformation is a deformation completely recoverable.  Thus elastic deformation is 

dependent on the value of the stress, but independent of the stress path, e.g., how soil is 

loaded to the stress state. Mathematically, it can be expressed as 

∫ = 0εd  (7) 

There is no change in elastic deformation for loading along an enclosed stress path. 

 

4: Original Cam Clay model and soil plasticity 

The proposal of the original Cam Clay model proposed by Roscoe, Schofield and Wroth 

(1958), is a revolutional development in modern soil mechanics.  Mechanical properties of 

soil have been unified elegantly and consistently into the model and Soil Mechanics 

hereafter is a systematic science. 
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4.1: Mathematical model 

When facing an object too large or too complicated for us to handle, we form a model for it 

by idealization,  simplification and approximation.  A model is a human invention for 

understanding and analyzing an object.  A model represents the features of an object of first 

importance.  Matters of second importance are ignored, and matters of great complexity for 

details are often simplified. 

The original Cam Clay model was formed by studying the deformation of soils in laboratory 

reconstituted states, not the states you find in nature.  As a result, the model is only suitable 

for describing the behaviour of soils in laboratory reconstituted states. 

Reconstituted clay: soils taken from nature, drying and breaking to powder, then mixing with 

water carefully.  

 

Fig. 4 Compression behaviour of reconstituted kaolin clay during an isotropic test 

4.2: A model for the compression behaviour of soil 

How to model the deformation of soil? Where should we start?  

We start by examining the behaviour of soil observed in experiments, and start from the 

simplest situations possible. Let’s examine experimental data on the isotropic compression 

test on reconstituted Kaolin clay. For an isotropic compression test, σ′1=σ′2=σ′3 .  The mean 

effective stress p′ is given by  
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( ) 13213
1 σσσσ ′=′+′+′=′p  (8) 

The results are presented in two scales, e-p′ scale and e-lnp′ (Fig. 4). The stress path is: 

loading from A to B, unloading from B to C, then reloading from C to B and to D, and then 

unloading again from D to E. 

The compression behaviour of soil in the e – lnp′ space is approximately linear.  Everyone, 

whether a scientist or an engineer, loves linearality. So soil behaviour is studied in the e – 

lnp′ space. 

 

Fig. 5 Compression behaviour of reconstituted kaolin clay in e – lnp′ space 

We can see that for loading along AB abd BD, the variation of the voids ratio e with the 

mean effective stress lnp′ is obviously in one line.   

What type of loading is it? During the loading, the current mean effective stress is the 

maximum mean effective stress the soil has ever experienced.  It is virgin loading.  

Therefore, the first assumption we make for the compression model is as follows. 

For virgin loading, the variation of the voids ratio e with the mean effective stress lnp′ is 

linear. 

The gradient of the compression line the e – lnp′ line is denoted by λ, the virgin compression 
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index (Fig. 5). 

Let’s examine soil behaviour along B C B, D E. What type of loadings are they? 

During these loadings, the current mean effective stress is less than the historical maximum 

stress the soil experienced.   B C and D E are unloading, and C B is reloading. 

In unloading, the voids ratio increases with the reduction in mean effective stress, and in 

reloading, the voids ratio decreases with the increase in mean effective stress.  There is a 

small hysterestic loop.  Thus, soil deformation during unloading and reloading is not 

completely recoverable.  If the hysterestic loop is ignored, soil deformation during unloading 

and reloading can be approximately treated as one line, thus the deformation during 

unloading and reloading is completely recoverable.  Then soil deformation can be assumed 

as elastic.  Also it can be seen that the variation of the voids ratio e with the mean effective 

stress p′ during unloading and reloading can be simplified as linear.  Therefore, the second 

assumption we make for the compression model is as follows. 

During unloading and reloading, the voids ratio e varies elastically and linearly with 

the mean effective stress lnp′. 

The elastic deformation of soil can be described by Hook’s law. The gradient of the 

compression line the e – lnp′ line is denoted by κ, the swelling and recompression index 

(Fig. 5) 

4.3: A number of important concept about plastic defromation 

4.3.1: Elastic deformation and plastic deformation 

The deformation of soil can be divided into elastic deformation and plastic deformation, thus 

pe ddd εεε +=  (9) 

The plastic deformation is not recoverable, e.g., the deformation produced by applying a 

force does not diminish when the force is removed. 

4.3.2 : Yielding of soil 

Let’s examine the compression behaviour of reloading of the kaolin clay in Fig. 5. For 

loading from CBD, at point B, there is a sharp change in the stress and strain curve.  Point B 

is the state where the current stress state reaches the maximum stress the soil has ever 
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experienced.  For further loading, the current mean effective stress will be the maximum 

mean effective stress the soil has ever experienced.  It is virgin loading.  Plastic deformation 

takes places at point B.  

At point B, soil behaviour changes from pure elastic behaviour to plastic behaviour, and 

there is a sharp change in the stress and strain curve.  We say yielding occurs at B.  

Consequently, the yielding points can be identified experimentally by observing the sharp 

change of the stress and strain curve. 

Fig. 6  Yield surface for soil 

 

4.3.3: Yield surface for soils 

For loading along stress path a1, i.e., isotropic compression, there is a yielding point (Fig. 6), 

marked by open diamond.  For all other stress paths, such as a2, a3, a4,     , Soil behaviour is 

similar to that for isotropic compression, a yielding point is found for every stress paths. 

All the yielding points make up a boundary in the p′-q space (Fig. 6).  This boundary is a 

yield surface for the soil. 

Similar to the idealization of the compression behaviour, soil behaviour is divided into two 

regions by the yield surface: the pure elastic deformation region and  plastic deformation 

regions. (1) Loading inside the yield surface, pure elastic deformation takes place. (2) 

Loading on the yield surface and causing it expansion,  plastic deformation takes place. 
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If a soil has no cohesion, e.g., a non cohesive soil,  tensile force cannot be applied.  Then the 

yield surface is valid only for p′ ≥ 0.  Because soil is a frictional material, yield surface for 

non-cohesive soils passes through the origin of the stress coordinates, the stress state (p′=0, 

q=0).  

Fig.7 Flow rule or the direction of the plastic strain increment  

4.3.4: Flow rule or plastic potential 

A flow rule defines the direction of plastic strain increment, i.e.,  

 

At any stress state on the yield surface, plastic deformation occurs for all the loadings 

pointing outside the yield surface, i.e., as shown in Fig. 7. 
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4.5: Yield surface and plastic potential for original Cam Clay model  

4.5.1: Equation for the dissipation of energy 

The yield surface and plastic potential for original Cam Clay model was derived from a 

hypothesis of energy dissipation.  The concept of energy dissipation is a very importance 

concept, a fundamental natural law. This law is in a higher order than constitutive relations, 

even principles of continuum mechanics. Roscoe, Schofield and Wroth (1958) proposed the 

following hypothesis of energy dissipation for soil. 

Soil is a frictional material and the dissipation of the plastic energy is 

proportional to distortional strain increment and the mean effective stress 

acting on it.  

Plastic work input to an element of soil can written as: 

 

Thus the following energy dissipation equation can be obtained, 

 

 

 

4.5.2: Drucker’s stability criterion and normality 

Drucker proposed the following stability criterion (1952) 
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The work done by the external agency on the change in displacement it 

produces must be positive or zero 

Fig.8 Drucker’s stability and normality  

For an element of soil that is in equilibrium, the original stress and strain state are denoted as 

(p′, q; εv, εd). An additional force (dp′, dq) is applied , and the displacement it produces is 

(dεv, dεd).  Mathematically, for an element of soil, the Drucker’s criterion can be written as  

 

For an enclosed stress path, we obtain 

 

The total strain increment is made up of elastic and plastic parts, i.e., equation (9). 

Considering that the work done by elastic deformation in an enclosed stress path is zero, then 

we obtain 

 

Now we know that (1) for all stress increments that point outside the yield surface plastic 

deformation will be induced, and that (2) there is one unique direction for the plastic strain 
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normality. 
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If the plastic strain increment vector is normal to the yield surface, the soil has associated 

flow rule. 

If the plastic strain increment vector is not normal to the yield surface, the soil has non-

associated flow rule. 

For soils with associated flow rule, the plastic potential is identical to the yield surface. 

Therefore,  

 

4.5.3 Yield surface and plastic potential 

As soil has associated flow rule, the plastic potential and the yield surface are identical. The 

partial differential equation given by the energy dissipation equation can be solved. We 

obtain the yield surface and plastic potential for the original Cam Clay model as follows, 

 

 

 

 

 

 

Fig.9 Yield surface and plastic potential for soils 
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4.5.4 Flow rule 

Based on the function for the yield surface, the following flow rule is obtained 
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Fig. 10 Size change of the yield surface 

4.6: Hardening of soil 

Hardening of yield surface is described as the expansion of the yield surface with plastic 

deformation.  The shrinkage of the yield surface such as that occurring during softening or 

instability may be considered as negative hardening. 

A fundamental contribution to soil plasticity by Roscoe, Schofield and Wroth (1958) in the 

formulation of the Cam Clay model is about the hardening law of soils.  It is proposed as 

The hardening of yield surface is dependent on the plastic volumetric 

deformation only. 

This is the volumetric hardening assumption. There are the following Consequences: 

(1)  There is one to one relationship between size of the yield surface and the plastic 

volumetric deformation. 

(2)  The plastic volumetric deformation is determined by the change in size of the yield 

surface only, irrespective of loading stress paths. 
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Consequently, the plastic volumetric deformation can be linked to the size change of the 

yield surface as follows 

o
p

v pdd ′Λ=ε  (22) 

Since the flow rule is given by eq. (21), we can determine all the plastic deformation if we 

find out the equation describing the relationship between the size change of the yield surface 

and the plastic volumetric deformation.  

There are three stress increments at stress state A with the size of the current yield surface 

being p′o (Fig. 10).  All the three loadings result in the same change of the yield surface, dp′o.  

As a result, the plastic volumetric deformation induced by the three paths is the same.  

Indeed all the loadings that result the same change in the yield surface, no matter where the 

stress state sits on the yield surface, will produce the same plastic volumetric deformation, 

such as stress paths at stress states A, B and K. 

 

Fig. 11 Hardening of soil 
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deformation during isotropic loading is well studied. So we try to establish the relationship 

between dp′o and dεv
p from studying soil behaviour during an isotropic compression test. 

As shown in Fig. 11, soil behaviour for isotropic tests can be described by the Isotropic 

Compresses Line (ICL). For virgin loading, where plastic deformation occurs, the gradient 

for ICL is λ, the virgin compression index.  For unloading and reloading, soil behaves 

elastically. The compression index for elastic deformation is k. 

Let’s examine soil behaviour for virgin loading from A to B.  At A, soil state is described by 

(p′A, eA). A stress increment dp′ is given, and soil state changes to B with(p′A+ dp′, eA+de).   

For loading from stress state A to B, soil state in the e – lnp′ plane travels along ICL. The 

reduction in voids ratio is,  
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p

de
A

′−=
λ  (23) 

The corresponding total volumetric strain increment can be calculated as 
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λε  (24) 

Elastic volumetric strain increment can be worked out by Hook’s law as follows 

( ) pd
pe

d
A

e
v ′

+
=

1
κε  (25) 

The difference between the total volumetric deformation and the elastic volumetric 

deformation gives the plastic deformation.  Thus 

( )
( ) pd

pe
ddd

A

e
vv

p
v ′

+
−

=−=
1

κλεεε  (26) 

The plastic volumetric deformation is dependent on the size change of the yield surface only.  

Thus equation (26) has to be rearranged in terms of the size of the yield surface, not 

magnitudes of the current stress.  For isotropic loading, we know 

     p′o=p′ , and dp′o=dp′ 

Thus, equation (26) can be written as 
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( )
( ) 0for
1
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+
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= oo
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p
v pdpd

pe
d κλε  (27) 

Only loading on the yield surface which results in the expansion of the surface does plastic 

deformation occur; thus a condition dp′o > 0 is imposed.  A relationship between dεv
p  and 

the change of yield surface for isotropic compression is thus obtained. Because the 

hardening of yield surface is dependent on the plastic volumetric deformation only.   The 

above equation is valid for all stress increments that result in the same change in the 

yield surface 

4.7: Plastic deformation and the incremental stress and strain relationship 

With all the work performed, the plastic deformation can be worked out and the original 

Cam Clay model is defined.  Let’s summarize the work introduced in Sections from 4.3 to 

4.6. 

Yield surface 

The yield surface is worked out from the energy dissipation function and Drucker’s stability 

criterion.  It is given as 

( ) 0ln,, =⎟⎟
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⎛
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p
qpqpf o
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 (28) 

The size of the yield surface p′o can be determined from any stress state on the surface as 

follows   
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The increment of the yield surface in size corresponding to a stress increment (dp′, dq) can 

be worked out as 
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Flow rule 

Soil is assumed to have associated flow rule, then 
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Hardening of the yield surface 

The hardening of soil is dependent on plastic volumetric deformation only. The relationship 

between the hardening of the yield surface and plastic volumetric deformation is  
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κλε  (32) 

Consequently, the plastic deformation can be worked out.  Suppose a stress state (p′, q) on 

the yield surface. When there is a stress increment (dp′, dq), which results in the expansion 

of the yield surface, plastic deformation will be induced.  The size change of the yield 

surface can be worked by eq. (30), then the plastic volumetric deformation can be worked 

out by eq. (32) and the plastic distortional deformation can be obtained by eq. (31), therefore, 
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Plus the elastic deformation the following incremental stress and strain relationship is 

obtained  
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And  
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The change in the strain state of an element of material resulting from the change in the 

stress state acting on the element is defined, and the original Cam Clay model is completed. 
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4.8: Two basic features of the original Cam Clay model 

The Cam Clay model successfully unifies consistently the mechanical properties of soil into 

a simple and elegant theoretical framework.  The formulation of the Cam Clay model is the 

most important development in modern soil mechanics. 

Two most distinguished features of the original Cam Clay model are discussed here. They 

are (1) the plastic volumetric dependent of hardening of soils, and (2) the existence of a 

critical state of deformation as the final failure state. These two features can be seen as the 

marks of models of the Cam Clay family. 

(1) Volumetric dependent of hardening 

The plastic-volumetric-deformation-dependent hardening of soil is proposed as follows 

The hardening of yield surface is dependent on the plastic volumetric 

deformation only. 

Consequently, plastic volumetric deformation is uniquely determined by the change of the 

yield surface in size; and there is one to one relationship between the size of the yield  

surface and plastic volumetric deformation. All stress states which have the same 

accumulation of plastic volumetric strain constitute a single yield surface.  Because the 

elastic volumetric deformation can be calculated from the current stress state, the value of 

the voids ratio minus the elastic contribution thus uniquely defines the plastic volumetric 

strain.  Therefore, the size of the yield surface is related to the current voids ratio, and the 

current stress state from which the elastic volumetric deformation is computed. 

(2) Prediction of the existence of a critical state of deformation 

Let’s examine the flow rule and the energy dissipation function 

η
ε
ε

−Μ=p
d

p
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d
d  

p
d

p
d

p
v dpqddp εεε ′Μ=+′  

At a special stress state, η=Μ, from flow rule, 
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∞=p
d

p
v

d
d
ε
ε  

Hence, at this special state, soil has no resistance to shear deformation.  Like water or gas, 

the material has no resistance to any further distortion. 

Examining the energy dissipation at this special state.  For no change of volumetric 

deformation, i.e., dεv
p =0, any value of dεd

p can satisfy the equation.  Therefore,  

Soil can remain at the state η=Μ  with no change in its stress, dp′o= 0, and no volumetric 

plastic deformation.  However, the shear plastic deformation can be infinitive. This is a 

Critical State of deformation. 

A Critical State of deformation is defined as 

At a Critical State of deformation, a soil has no resistance to shear 

deformation and the soil can be distorted continuously with its stress state 

and voids ratio remain unchanged. 

A critical state of deformation is a final failure state. Cam Clay model is the first Critical 

State model. The theoretical framework, unifying consistently the mechanical properties of 

soil into one simple and elegant system under the original Cam Clay model, is referred to as 

the Critical State Soil Mechanics (CSSM).  With the introduction of the CSSM soil 

mechanics is established as a cohesive science. 

5: Models of the Cam Clay family 

 

To be added. 

 

6: Notation used in this note 
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For simplicity, stress and strain states of axisymmetrical conditions are considered in this 

note. σ′1 (or ε1) and σ′3 (or ε3) are the axial effective stress (strain), and the radial effective 

stress (strain) respectively. The mean effective stress p′, shear stress q and stress ratio η are 

given by 

( )31 2
3
1 σσ ′+′=′p  

( )31 σσ ′−′=q  

p
q
′

=η  . 

The corresponding (work-conjugate) volumetric strain increment, dεv,, and shear strain increment, dεd, are 

defined by 

31 2 εεε ddd v +=  

and 

( )313
2 εεε ddd d −=  

e, voids ratio of a soil;      ν, Poisson’s ratio, 

E, Young’s modulus;    κ, elastic swelling and recompression index; 

λ, compression index for virgin yielding;   M, critical state strength. 


